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It was shown in [1, 2], that a star-like shape of the cross-
section of any aircraft's frame allows to decrease by tens of times
the wave di'ag by comparison with a spinning body of equivalent volume
or midship section area, Because of the fact that the conclusions are
based upon the utilization of the Newton formula for pressure distri-
bution, it is necessary to ascertain whether or not such drag decrease
is fictitious at the expense of error increase in the latter. The
answer might be provided by comparison with the exact solution, However,
only one exact solution is known for spatial bodies [3], whose appli-
cation is restricted to pyramidal bodies, remote in their shape from
the optimum ones. In the light of the above-said, it appears to be in-
resting to synthesize the exact solution for spatial bodies of star-like
shape, similar to those studied in [1].

Let us consider a system of plane intersecting discontinuities
pessing through the origin of coordinates and defined by the angles &
and Y (Fig. 1). We shall denote the velocity of the incident flow and
the Mach number respectively by U and M. We shall introduce the
auxiliary angle Y, according to the formula tgwi=tgysina, ; then the
velocity components behind the first discontinuity, referred to the

* Tochnoye resheniye gadachi obtekaniya nekotorykh prostranstvennykh
tel sverkhzvukovym potokom gaza.



value of the velocity of the incident flow, are determined from the
expressions

v, =1 — (1i— e) (sin®*1y — M;’,), v, =(—e)ctgn (sin? 1, — M;f) sina
%;—u—gmn@ﬂn—mbmu:e=m—nm+W{ )

(% being the adiabat index)

Let the total velocity vector, referred to the velocity U and
the Mach number behind the first discontinuity be U; and Mi. The flow
deflection upon passing through the
first discontinuity ( angle §) may
be computed from the correlation

(1 — e (sin* 1, — M™)
O =cNT ({1 "¢ @it — Mo )

After that, the Mach number M;
is found by well known formulas for an
oblique discontinuity. The perturbed
gas flow behind the selected system
of discontinuities will correspond to
flow past a certain body, provided there is a regular intersection of
discontinuities at the point A, permitting to rotate the flow parallel-

Fie, 1

wise to symmetry plane. The necessary condition for a regular cfossing is
My, = M;sine >1 @)
The angle @ between the velocity vector U; and the discontinui-
ties intersection line OA is found from the correlation ‘

cosmoosﬁ=ws(‘h~6)cos1

Let us now introduce into the consideration the deflection
angle ® of the flow, lying in a plane normal to the rib OA and formed
by projections of the segment 01A and of the velocity vector Ui.on
this plane, After rather simple transformations, we shall obtain for
its value the formula

cos 0= (tgy —tgdsina) [tg?7(1 + cos?atg?d) + tg*d —2sinathlgol"" 3
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The disposition of the second wave (OAD in Fig.l) can now be
determined by the angle F, lying in the plane of the angle §, from
the condition that the turn of the flow in this plane is given by the
expression (3). As a result, the angle F is found by formulas of the
obligque discontinuity in the form

M 2sin*B — 1

M2 (% -+ cos 2B) + 2

tg0=2ctgB @

If the problem's initial parameters M,,, Y and a are such that
the expression (4) has a solution relative to the angle P, the construct-
ed gas flow will correspond to a flow past a certain spatial body with
a transverse cross section constituted of straight line segments. Let us
define its geometry ( points E, D, C, in Fig.1l). After elementary trans-

formations, we find that points E and D have for coordinates

yp = (sine — A cosa) tg d, Afsintcosasind —— ctg(p — 0)cos 8] = cos w
: Y. = s ctg(n/n), z sin{@ —n/ fz) = lg: 1, sin (1; /n) (5)
For the determination of the position of the remaining points
we must know the coordinate of the point F, lying over the extemsion of
the wall CD, The celculation leads to the expression

tgr tedcos(@ —a/n) (8)

yp=sin(u/n)tg'tx+sin(u—n/n)cosat.g&

Hence, we find that the coordinates of the point D can be found

from the formulas
, _ypctg(3 —0) +sinyctg (@ —v)

- P g —0) reosTelg@ — V)
. M= g = sin’T —COS T Yp (7)
o’ b D™ Clg® —0) +cosyctg @ — )
. tg 6 n
ey =(1-17) wle )
]
2/
20 The projections of the regions of perturbed
W i flow behind the first and second disconti-
0 2 4«0 & & /“ nuities on the plane x=1 are determined
Fig. 2 by the areas S5 and S,. Their values, using

(5) = (7), are computed from the correlations

251 = yp (zc —zD), Zs" = yEzb



Let us now pass to the computation of forces. The wall CD is

subject to a force caused by the constant pressure
cp(l) =2 (1 — e) (sin? 3, — M.OO_’) A
This wall ED is situated in a region of increased pressure,
the value of which being '

sinto (sin? B — M;0) (1 — €) M dsin' 1y
1 + e (M ?sin* 1, — 1)

cp(l) —_ cp(” + 20,2

In each of the regions ACD and ADE (Fig,1l) the flow is uniform.
A1l the lines of current in the plane x = 1, passing through the dis-
continuity AC, converge into one point E, which is the Ferri point for
this flow about. At the same time, during the passage of the second wave
4D, all the current lines, including the wall have a break. The wave
drag of the considered body is represented in the form

8 + oS,
=5 T %

The solution of the inverse problem exists only for a specific
range of values of the parameters M oo, %, Y and n. For example, the
inequality & >%®/n must be always fulfilled. Obviously, other limita-
tions exist also. One of such limitations is the necessary condition (2).
Its utilization provides for every. value of the Mach number of the inei-
dent flow a specific region of acceptable values of the parameters &« and
Y. The results of computation for the range of numbers Mgo=5, 10 and
00 at adiabat index % = 1.4 are shown in Fig. 2. The corresponding
regions are shaded. It must be borne in mind that the condition (2) is
not sufficient, and that is why the choice of parameters within the in-
dicated regions has a character of preliminary selection. The computation
of the dependence of wave drag on the angle « for certain values of the
parameters M, n and Y ( X = 1.4) is shown in Figs.3 -4,

The value C/C., plotted in the ordinate axis, represents
the drag ratio of a circular come, equivalent by length and midship
section area to that of a star-shaped body.
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The com:utation for M, =o,1=10° and 20° is executed in Fig. 3.
As may be seen from the graph, the difference in the drag decreases as
the angle « increases. However, the drag of a star-shapsd body still
rernains by about 10 times smaller even at great values of &, than for
an equivalent cone. As the value (@ —x/n) decreases, the drag of a
star-shaped body drops, and difference with the cone increases.

Comparison of the curves of Fig.3
shows that the drag of the body will 4
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decreese with the increase of the number of ribs n with all other para-
meters unchanged, whereas with the increase of the parameter Y it in-
creases, An analogous qualitative behavior is preserved also for finite

numbers of M oo

Let us point to a peculiarity in the disposition of the curves
in Fig. 4. According to the graphs, the drag coefficient increases with
the increase of M ,,, the other parameters remaining invariable. In rea-
lity various bodies are obtained at different Mach numbers, while the
variation in body geometry is more manifest on the drag, than the change
of the Mach number. The form of cross section for a single case at para-
meter values n =6,y = 5%, a = 41° and M _, = 0o is also shown in
Fig. 4. Alongside with the precise calculation of the wave drag, a com-
putation by the Newton formula was made for the obtained bodies in a series
of cases, The comparison disclosed an error of the order of 20 percent,
Therefore, all the results on the significant decrease of wave drag,
obtained earlier for star-shaped bodies [1 =2 ]. agree well with the

exact solution in both, qualitative and quantitative reference,




Note in conclusion, that the assumption on the possibility of si-
milar solution was expressed independently by G. I. Maykapar [4].
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